Optimal boundary control with critical penalization for a PDE model of fluid-solid interactions1

نویسندگان

  • Francesca Bucci
  • Irena Lasiecka
چکیده

We study the finite-horizon optimal control problem with quadratic functionals for an established fluid-structure interaction model. The coupled PDE system under investigation comprises a parabolic (the fluid) and a hyperbolic (the solid) dynamics; the coupling occurs at the interface between the regions occupied by the fluid and the solid. We establish several trace regularity results for the fluid component of the system, which are then applied to show well-posedness of the Differential Riccati Equations arising in the optimization problem. This yields the feedback synthesis of the unique optimal control, under a very weak constraint on the observation operator; in particular, the present analysis allows general functionals, such as the integral of the natural energy of the physical system. Furthermore, this work confirms that the theory developed in Acquistapace et al. [Adv. Differential Equations, 2005]—crucially utilized here—encompasses widely differing PDE problems, from thermoelastic systems to models of acoustic-structure and, now, fluid-structure interactions. 2000 Mathematics Subject Classification. 35B37, 49J20, 74F10, 49N10, 35B65, 35M20, 93C20.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elastic Wave Propagation at Imperfect Boundary of Micropolar Elastic Solid and Fluid Saturated Porous Solid Half-Space

This paper deals with the reflection and transmission of elastic waves from imperfect interface separating a micropolar elastic solid half-space and a fluid saturated porous solid half-space. Longitudinal and transverse waves impinge obliquely at the interface. Amplitude ratios of various reflected and transmitted waves are obtained and computed numerically for a specific model and results obta...

متن کامل

Wave Propagation at the Boundary Surface of Inviscid Fluid Half-Space and Thermoelastic Diffusion Solid Half-Space with Dual-Phase-Lag Models

The present investigation deals  with the reflection and transmission phenomenon due to incident plane longitudinal wave at a plane interface between inviscid fluid half-space and a thermoelastic diffusion solid half-space with dual-phase-lag heat transfer (DPLT) and dual-phase-lag diffusion (DPLD) models. The theory of thermoelasticity with dual-phase-lag heat transfer developed by Roychoudhar...

متن کامل

Optimal Boundary Control for Water Hammer Suppression in Fluid Transmission Pipelines

When fluid flow in a pipeline is suddenly halted, a pressure surge or wave is created within the pipeline. This phenomenon, called water hammer, can cause major damage to pipelines, including pipeline ruptures. In this paper, we model the problem of mitigating water hammer during valve closure by an optimal boundary control problem involving a nonlinear hyperbolic PDE system that describes the ...

متن کامل

TOPOLOGICAL OPTIMIZATION OF VIBRATING CONTINUUM STRUCTURES FOR OPTIMAL NATURAL EIGENFREQUENCY

Keeping the eigenfrequencies of a structure away from the external excitation frequencies is one of the main goals in the design of vibrating structures in order to avoid risk of resonance. This paper is devoted to the topological design of freely vibrating continuum structures with the aim of maximizing the fundamental eigenfrequency. Since in the process of topology optimization some areas of...

متن کامل

Bifurcation in a variational problem on a surface with a constraint

We describe a variational problem on a surface under a constraintof geometrical character. Necessary and sufficient conditions for the existence ofbifurcation points are provided. In local coordinates the problem corresponds toa quasilinear elliptic boundary value problem. The problem can be consideredas a physical model for several applications referring to continuum medium andmembranes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009